Cours d'allemand gratuits Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Imprimer
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien


Recommandés :
- Jeux gratuits
- Nos autres sites



Les applications

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Les applications
Message de inssaf147 posté le 09-10-2013 à 22:13:12 (S | E | F)
Salut; Bonjour,
Pouvez-vous m'expliquer ces exercices dont dans lequel j'ai trouvé des difficultés ? et merci
Exercice1:
Soit f une fonction définie de R à ]0;1/2] avec:
f(x)=1/x+2
1) Démontrer que f une application de R+ à ]0;1/2]
2) Sélectionner f([0;1] et f-1 ([1/3;1/2]
Exercice2: Soit f une fonction de E à F. A et B des parties dans E et C une partie dans F.
Démontrer que:
1) f(A union B)= f(A) union f(B)
2) f(A inter B) inclus dans f(A) inter f(B)
3) A inclus dans f^-1( f(A) )
4) f( f^-1(C) ) inclus dans C
Et merci d'avance!
-------------------
Modifié par bridg le 10-10-2013 02:19

-------------------
Modifié par inssaf147 le 10-10-2013 14:05



-------------------
Modifié par inssaf147 le 10-10-2013 23:25



-------------------
Modifié par inssaf147 le 10-10-2013 23:39




Réponse: Les applications de tiruxa, postée le 10-10-2013 à 10:42:18 (S | E)
Bonjour,
Dans l'exercice 1, je suppose qu'il s'agit de f(x) = 1/(x+2).

Déjà la première question est impossible car -2 n'a pas d'image par f donc f n'est pas une application de R dans R

Rappel :
une application est une relation entre deux ensembles pour laquelle chaque élément du premier (appelé ensemble de départ ou source) est relié à un unique élément du second (l’ensemble d'arrivée ou but)

Ici ce n'est pas le cas pour le réel -2

A mon avis ce doit être R+ et non R, peux tu confirmer et relire les énoncés attentivement.



Réponse: Les applications de tiruxa, postée le 10-10-2013 à 15:42:52 (S | E)
Bon en effet si c'est R+, chaque élément de R+ a bien une seule image puisque seul -2 n'a pas d'image par la fonction f.

f est bien une application de R+ dans R.

Mais on demande dans ]0;1/2], il reste donc à démontrer que 0 < f(x) <= 1/2.
Or x est positif donc x+2 > 0 donc f(x)>0 il reste à justifier que f(x) <= 1/2.

On peut le faire de plusieurs façons, le plus simple je pense est d'étudier le signe de la différence f(x) - 1/2.

Je te laisse terminer...



Réponse: Les applications de inssaf147, postée le 10-10-2013 à 21:09:31 (S | E)
Merci pour votre aide qui ne sera jamais négliger. Sinon Dites-moi ce que je dois faire dans le deuxième exercice ?



Réponse: Les applications de tiruxa, postée le 10-10-2013 à 23:24:03 (S | E)
Bonsoir,

Je voudrais bien vous aider mais la première question de l'exercice 2 est fausse...

Donc je me répète vérifiez l'énoncé !



Réponse: Les applications de inssaf147, postée le 10-10-2013 à 23:26:33 (S | E)
Maintenant, j'ai modifié et j'ai corrigé la faute



Réponse: Les applications de tiruxa, postée le 10-10-2013 à 23:32:58 (S | E)
Prenons un exemple simple : E = {a,b,c} et F = R
A={a,b} et B = {b,c} on a A inter B = {b}

Définissons f
f(a) = 1, f(b) = 2, f(c) = 1

On f(A)= {1,2} et f(B) = {1,2} donc f(A) inter f(B) = {1,2}
Or f(A inter B) ={2}

Donc f(A inter B) n'est pas égal à f(A) inter f(B)

Donc impossible de montrer la première question !!

Par contre on peut démontrer la deuxième.



Réponse: Les applications de inssaf147, postée le 10-10-2013 à 23:40:55 (S | E)
Non non , pour la première ce n'est pas inter c'est union !



Réponse: Les applications de inssaf147, postée le 10-10-2013 à 23:49:53 (S | E)
Merci Pour ces deux cas; je l'ai démontré. Cependant, Il me reste les deux dernières. Que dois-je faire ?



Réponse: Les applications de tiruxa, postée le 11-10-2013 à 00:04:20 (S | E)
Prendre a élément de A et démontrer qu'il est élément de f-1(f(A))

Je fais le début... mais terminez ici que je puisse voir si mon aide est profitable...

Posons b = f(a) on a donc b élément de f(A) (car a est élément de A)

.... à continuer




[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths

Partager : Facebook / Twitter / ... 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | GUIDE DE TRAVAIL | NOS MEILLEURES FICHES | Les fiches les plus populaires | Aide/Contact

> COURS ET TESTS : Abréviations | Accords | Adjectifs | Adverbes | Alphabet | Animaux | Argent | Argot | Articles | Audio | Auxiliaires | Chanson | Communication | Comparatifs/Superlatifs | Composés | Conditionnel | Confusions | Conjonctions | Connecteurs | Contes | Contraires | Corps | Couleurs | Courrier | Cours | Dates | Dialogues | Dictées | Décrire | Démonstratifs | Ecole | Etre | Exclamations | Famille | Faux amis | Films | Formation | Futur | Fêtes | Genre | Goûts | Grammaire | Grands débutants | Guide | Géographie | Heure | Homonymes | Impersonnel | Infinitif | Internet | Inversion | Jeux | Journaux | Lettre manquante | Littérature | Magasin | Maison | Majuscules | Maladies | Mots | Mouvement | Musique | Mélanges | Méthodologie | Métiers | Météo | Nature | Nombres | Noms | Nourriture | Négations | Opinion | Ordres | Participes | Particules | Passif | Passé | Pays | Pluriel | Politesse | Ponctuation | Possession | Poèmes | Pronominaux | Pronoms | Prononciation | Proverbes | Prépositions | Présent | Présenter | Quantité | Question | Relatives | Sports | Style direct | Subjonctif | Subordonnées | Synonymes | Temps | Tests de niveau | Tous les tests | Traductions | Travail | Téléphone | Vidéo | Vie quotidienne | Villes | Voitures | Voyages | Vêtements

> NOS AUTRES SITES : Cours mathématiques | Cours d'espagnol | Cours d'allemand | Cours de français | Cours de maths | Outils utiles | Bac d'anglais | Learn French | Learn English | Créez des exercices

> INFORMATIONS : Copyright - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée | Cookies.
| Cours et exercices d'allemand 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.