Cours gratuits > Forum > Forum maths || En bas
Message de justinee posté le 13-02-2012 à 18:45:22 (S | E | F)
Bonsoir, je suis en 1ere S , j'ai été malade cette semaine et donc je n'ai pas très bien compris le chapitre sur les radians, pourriez-vous m'aider sur mon exercice que j'ai à rendre pour demain ?
C est un cercle trigonométrique de centre O et (O; I ; J ) est un repére orthonormé direct. Pour un nombre réel x de [ 0; pie/4 ], on note le point image de x et N le point image de pie/2 - x .
Le but de l'exercice est de calculer l'aire du polyone OIMNJ.
1) Démontrer que l'aire du triangle IOM est égale à 1/2sinx
2) a. Donner une mesure de l'angle ( OM; ON )
b. Démontrer que l'aire du triangle OMN est égale à 1/2cos2x
Il reste 2 petites questions mais si je comprend ceux là je pense les réussir.
Il y a une petite figure mais je ne la trouve pas :/ si vous avez le livre hyperbole c'est l'exo 67 page 202 . Sinon je sais pas comment l'expliquer :/
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 19:48:37 (S | E)
Bonsoir justinee,
Pour calculer l'aire du triangle OIM que te faut-il connaître ?
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 19:53:22 (S | E)
Je pensais aux rayons qui sont l'hypoténuse et le coté opposé du cercle et donc égaux à 1 non ?
J'ai oublié de préciser que nous avonc 2 mesures : (OI:OM) = x (angle) et (OI;ON) = pie/2 - x
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 19:57:43 (S | E)
Re-bonsoir,
Autrement dit comment calcule-t-on l'aire d'un triangle en général ?
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 20:01:09 (S | E)
Aire d'un triangle = 1/2 x ( B x h ) Mais là nous n'avons pas la base , nous avons l'hypoténuse et le côté opposé c'est bien ça ?
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 20:08:02 (S | E)
Re-bonsoir justinee,
Nous avons la base et il nous faut la hauteur, qui est perpendiculaire à la base.
Je ne vois pas ce qu'est un côté opposé ( à quoi ?) pour notre calcul.
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 20:10:22 (S | E)
En fait j'appelle le côté opposé OI mais ça serait donc la hauteur ?
donc le calcul serait : aire = 1/2 x ( B x h )
= 1/2 x ( 1 x 1)
= 1/2 x 1
= 1/2
aire du triangle = 1/2 cm² ?
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 20:14:55 (S | E)
Re-bonsoir justinee,
Si OI est la hauteur, a quel autre coté est-elle perpendiculaire ?
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 20:18:30 (S | E)
OI est le coté perpendiculaire à IM , le triangle est rectangle en I
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 20:21:22 (S | E)
Re-bonsoir justinee,
Impossible M serait situé à la verticale de I .
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 20:23:14 (S | E)
Ou alors le triangle est pas tout à fait rectangle, c'est u piège puisqu'il n'y a pas de marquage sur la figure , je vais essayer de trouver la figure sur le net pour vous la montrer
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 20:26:16 (S | E)
est ce que je peux vous envoyer l'exercice par mail ?
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 20:29:41 (S | E)
Re-bonsoir justinee,
Inutile de chercher pour le schéma.
Supposons que OI soit la base comment tracer la hauteur ?
Elle est perpendiculaire à OI et elle passe par le 3ème sommet du triangle.
Et pour préparer la suite tu prendras connaissance du lien ci-dessous:
Lien internet
Je reviens dans une demi heure.
A tout de suite.
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 20:33:39 (S | E)
Donc je pense que la hauteur à OI est IM , j'espére vraiment que je me trompe pas !
Réponse: Exercice pour demain de logon, postée le 13-02-2012 à 20:41:56 (S | E)
Justine,
je pense que Vieupf vous aide avec ses questions pertinentes et je ne mets ce dessin que pour vous aider à mieux communiquer!
J'espère qu'il est juste?
-------------------
Modifié par logon le 13-02-2012 20:42
J'ai confondu M et N!!!
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 20:44:40 (S | E)
Oui c'est ça sauf que le triangle OMN est plus grand ! Merci beaucoup ! Mais j'aî quand même l'impression que la hauteur H sera confondu avec le coté IM :/
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 20:51:00 (S | E)
Re-bonsoir justinee,
Inutile de chercher pour le schéma.
Supposons que OI soit la base comment tracer la hauteur ?
Elle est perpendiculaire à OI et elle passe par le 3ème sommet du triangle.
Et pour préparer la suite tu prendras connaissance du lien ci-dessous:
Lien internet
Je reviens dans une demi heure.
A tout de suite.
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 20:54:00 (S | E)
Pour la tracer, il faudrait faire la droite perpendiculaire à OI et qui passerait par M
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 21:19:03 (S | E)
Re-bonsoir justinee,
On va d’abord remercier Logon pour cette magnifique figure.
Elle est parfaite et pour correspondre à ton énoncé on convient de permuter N avec M sur la figure de Logon.
Je crois que la hauteur apparaît comme étant MH.
Peux-tu évaluer MH en utilisant une ligne trigonométrique dans le triangle OHM rectangle en H ?
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 21:22:10 (S | E)
Il semble que MH = la moitié du sinus qui se lit que l'axe des ordonnées
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 21:23:53 (S | E)
* qui se lit SUR
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 21:32:06 (S | E)
Re-bonsoir justinee,
Effectivement le sinus de l’angle x (OM,OI) est la projection orthogonale de M sur l’axe des sinus, donc sinus x = MH. (et non 1/2 de ..)
Dans ces conditions que vaut l’aire du triangle OIM ?
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 21:39:19 (S | E)
aire du triangle OIM = 1/2 x ( 1 X sin x )
= 1/2 sin x
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 21:45:29 (S | E)
Re-bonsoir justinee,
Parfait.
Passons à la 2ème question :
Que proposes-tu pour la mesure de l’angle (OM,ON) ?
Réponse: Exercice pour demain de justinee, postée le 13-02-2012 à 21:45:45 (S | E)
Merciiiiiiiii ! ensuite pour la 2a) (ON,ON) = pie/2 - 2x ?
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 22:00:27 (S | E)
Re-bonsoir justinee,
Parfait.
Il te faut démonter que l’aire du triangle OMN = ½ sin 2x.
Que proposes-tu ?
Réponse: Exercice pour demain de idelerg, postée le 13-02-2012 à 22:07:50 (S | E)
le point M est l'inersection du cercle trigo avec un rayon formant un angle x.
M se projette en M' sur OI.
La surface du triangle OIM est 1/2*OI*MM'
OI = OM = OJ = ON = 1 par def du cercle trigo
Dans le triangla rectangle OM'M : sinx = MM'/OM cad MM'
donc surf OIM = 1/2sinx
Angle OM,ON = PI/2 - x -x soit pi/2 - 2x
B) le triangle OMN est isocèle, on abaisse la hauteur de O sur MN, soit O' le point d'intersection avec MN.
Les 2 triangles rect en O' OO'M et OO'N sont identiques
leur surface est égale
la surface OO'N est 1/2*O'N*OO'
O'N = sin(pi/4 - x)
OO' = cos(pi/4 - x)
donc surface OO'N = 1/2*sin(pi/4 - x)*cos(pi/4 - x)
d'apres la formule sin(2x) = 2sinx.cosx soit sin(pi/4 - x)*cos(pi/4 - x) = 1/2*sin(pi/2 - 2x)
surface OO'N = 1/4*sin(pi/2 - 2x) = 1/4*cos(2x)
et surface OMN = 2* surface OO'N soit 1/2*cos2x
CQFD
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 23:06:12 (S | E)
Re-bonsoir justinee,
Je ne sais pas si la démonstration de idelerg t’a apporté quelque chose et te convient.
Dans le cas contraire j’ai une autre solution à proposer, image de celle utilisée pour la 1ère question.
A toi de voir.
Réponse: Exercice pour demain de vieupf, postée le 13-02-2012 à 23:36:46 (S | E)
Re-bonsoir justinee,
Comme il est tard je te poste mon idée.
Dans une nouvelle figure :
Fais pivoter le triangle MON de telle sorte que N coïncide avec J.
Trace l’horizontale MV perpendiculaire à OJ et la verticale MH perpendiculaire à OI.
Note que l’angle (OM,OJ) = (pi/2)-2x et l’angle (OI,OM) = 2x (déjà connus)
Il te reste à calculer VM = OH hauteur du triangle OMV et de calculer son aire comme précédemment à l’aide d’une ligne trigonométrique faisant intervenir l’angle 2x.
Encore merci à Logon.
Bon courage et bonne reprise.
Réponse: Exercice pour demain de justinee, postée le 14-02-2012 à 08:29:45 (S | E)
Merci beaucoup à tous pour vos aides ! Grâce à vous j'ai pu comprendre et finir encore merci
Cours gratuits > Forum > Forum maths