Cours d'allemand gratuits Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Imprimer
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien


Recommandés :
- Jeux gratuits
- Nos autres sites



Fonction logarithme-Dérivée de ln

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Fonction logarithme-Dérivée de ln
Message de madge posté le 07-03-2011 à 18:37:00 (S | E | F)
Bonjours,

J'ai un exercice de math à faire pour Mercredi, mais je n'arrive pas à le faire, ou plutot je ne sais pas comment le résoudre :

Soit f la fonction définie sur ]-1;+∞[ par f(x)=-x²+4x-ln(x+1)
1) Calculer f'(x)
2) Etudier le signe de f'(x) et dresser le tableau de variation de la fonction f.
3) Montrer que l'équation f(x)=0 admet une solution unique x0 sur l'intervale [2;3]. Donner une valeur approchée de x0 (aux centièmes)

Pour l'instant, j'ai trouvé que f'(x)= (-2x)+4-1/(x+1)

Merci de votre aide!



Réponse: Fonction logarithme-Dérivée de ln de walidm, postée le 07-03-2011 à 18:54:35 (S | E)
Bonjour.
Tu commences par mettre au même dénominateur dans l'expression de f':
f'(x)= (-2x)+4-1/(x+1)=....
Il te faudra chercher les limites au bornes ( -1 et +inf)
Pour 3) tu veux dire f'(x)=0?



Réponse: Fonction logarithme-Dérivée de ln de logon, postée le 07-03-2011 à 19:31:33 (S | E)

Images

Walidm t'a dit comment procéder... voilà la courbe ...


Mais il semble que le zéro soit entre 3 et 4... à moins que je ne me trompe...

-------------------
Modifié par logon le 07-03-2011 19:34



-------------------
Modifié par logon le 07-03-2011 19:42





Réponse: Fonction logarithme-Dérivée de ln de drijohn, postée le 08-03-2011 à 12:02:19 (S | E)

slt Madge,je ferai mon mieux

1) la dérivée est juste

2)signe de f '(x):on rend au même dénominateur & pr tou x € ]-1;+∞[,on a x+1>0 dc le signe de f '(x) est celui de          -2x2 +2x -3. on calcul le discriminant qui est négatif. par conséquent le signe de f '(x) est celui de -2<0. on déduit que   f '(x)<0. d'ou f est strictement décroissante sur ]-1;+∞[. tu calcules les limites en -1 et en +∞. en -1 on a +∞ et en +∞ on a -∞.c'est dc logik car on décroit. tu peux faire le tableau toi-même maintenant

3) cette question comporte en mon sens une erreur.si tu trouves fais moi signe stp.







[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths

Partager : Facebook / Twitter / ... 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | GUIDE DE TRAVAIL | NOS MEILLEURES FICHES | Les fiches les plus populaires | Aide/Contact

> COURS ET TESTS : Abréviations | Accords | Adjectifs | Adverbes | Alphabet | Animaux | Argent | Argot | Articles | Audio | Auxiliaires | Chanson | Communication | Comparatifs/Superlatifs | Composés | Conditionnel | Confusions | Conjonctions | Connecteurs | Contes | Contraires | Corps | Couleurs | Courrier | Cours | Dates | Dialogues | Dictées | Décrire | Démonstratifs | Ecole | Etre | Exclamations | Famille | Faux amis | Films | Formation | Futur | Fêtes | Genre | Goûts | Grammaire | Grands débutants | Guide | Géographie | Heure | Homonymes | Impersonnel | Infinitif | Internet | Inversion | Jeux | Journaux | Lettre manquante | Littérature | Magasin | Maison | Majuscules | Maladies | Mots | Mouvement | Musique | Mélanges | Méthodologie | Métiers | Météo | Nature | Nombres | Noms | Nourriture | Négations | Opinion | Ordres | Participes | Particules | Passif | Passé | Pays | Pluriel | Politesse | Ponctuation | Possession | Poèmes | Pronominaux | Pronoms | Prononciation | Proverbes | Prépositions | Présent | Présenter | Quantité | Question | Relatives | Sports | Style direct | Subjonctif | Subordonnées | Synonymes | Temps | Tests de niveau | Tous les tests | Traductions | Travail | Téléphone | Vidéo | Vie quotidienne | Villes | Voitures | Voyages | Vêtements

> NOS AUTRES SITES : Cours mathématiques | Cours d'espagnol | Cours d'allemand | Cours de français | Cours de maths | Outils utiles | Bac d'anglais | Learn French | Learn English | Créez des exercices

> INFORMATIONS : Copyright - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée | Cookies.
| Cours et exercices d'allemand 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.