Cours d'allemand gratuits Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Imprimer
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien


Recommandés :
- Jeux gratuits
- Nos autres sites



Nombre pair

<< Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Nombre pair
Message de kool posté le 27-09-2010 à 22:19:26 (S | E | F)
bonsoir. notre professeur de maths nouas a demandé de faire l'exercice suivant: est-ce qu'on peut avoir des nombres paires a et b et c tel que: a²+b²+c²=14.
voici ma réponse: on a a² et b² et c² des nombres
et on connait que la somme de 3 nombres paires est un nombre paire
et puisque 14 est un nombre paire
donc on peut avoir trois nombres paires tel que a²+b²+c²=14.
je voudrais savoir si cette réponse est correcte.
et merci d'avance


Réponse: Nombre pair de walidm, postée le 27-09-2010 à 22:29:03 (S | E)
Bonjour.
Si a est un nombre entier pair: a est multiple de 2, donc a² est multiple de 4.
La somme de nombres divisibles par 4 est un nombre divisible par 4.
Or 14 n'est pas un multiple de 4.
Ta réponse nécessite une révision.



Réponse: Nombre pair de aissa_foul, postée le 28-09-2010 à 15:13:45 (S | E)
quelque sois un nombre paire on peus l'écrire par exemple:x=2k/k et x sont d nombre,
et quand tu remplace a=2h et b=2k et c=2l dans l'exersice tu vas trouver que a²+b²+c²=14



Réponse: Nombre pair de azerty123, postée le 28-09-2010 à 15:19:07 (S | E)
Tout d'abord, si tu ne vois pas la solution, essaie de voir avec des exemples.
Les choix de a,b et c sont 0,2,4,6...
On voit tout de suite que les triplets (0,0,2), (0,2,0) et (2,0,0) ne marchent pas.
2²=4/= 14
De même, comme un carré est toujours positif, si a, b ou c sont supérieurs ou égaux à 4, c'est foutu.
Il reste seulement les triplets (0,2,2),(2,0,2) et (0,0,2).
Mais de même, 2²+2²=8, ça ne suffit pas.
C'est donc impossible.

Comme démonstration, je te propose un raisonnement par l'absurde.
Supposons que les chiffres pairs a, b et c vérifient a²+b²+c²=14
Comme ils sont pairs, on peut les écrire de la forme :
a=2k, b=2k' et c=2k" avec k un entier quelconque.

On a alors 4k²+4k'²+4k"²=14 c'est-à-dire 2(k²+k'²+k"²)= 7.
Cela reviendrait à affirmer que 7 est un chiffre pair...
En voilà une belle contradiction.
Donc ce n'est pas possible qu'ils soient pairs.






[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


<< Forum maths

Partager : Facebook / Twitter / ... 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | GUIDE DE TRAVAIL | NOS MEILLEURES FICHES | Les fiches les plus populaires | Aide/Contact

> COURS ET TESTS : Abréviations | Accords | Adjectifs | Adverbes | Alphabet | Animaux | Argent | Argot | Articles | Audio | Auxiliaires | Chanson | Communication | Comparatifs/Superlatifs | Composés | Conditionnel | Confusions | Conjonctions | Connecteurs | Contes | Contraires | Corps | Couleurs | Courrier | Cours | Dates | Dialogues | Dictées | Décrire | Démonstratifs | Ecole | Etre | Exclamations | Famille | Faux amis | Films | Formation | Futur | Fêtes | Genre | Goûts | Grammaire | Grands débutants | Guide | Géographie | Heure | Homonymes | Impersonnel | Infinitif | Internet | Inversion | Jeux | Journaux | Lettre manquante | Littérature | Magasin | Maison | Majuscules | Maladies | Mots | Mouvement | Musique | Mélanges | Méthodologie | Métiers | Météo | Nature | Nombres | Noms | Nourriture | Négations | Opinion | Ordres | Participes | Particules | Passif | Passé | Pays | Pluriel | Politesse | Ponctuation | Possession | Poèmes | Pronominaux | Pronoms | Prononciation | Proverbes | Prépositions | Présent | Présenter | Quantité | Question | Relatives | Sports | Style direct | Subjonctif | Subordonnées | Synonymes | Temps | Tests de niveau | Tous les tests | Traductions | Travail | Téléphone | Vidéo | Vie quotidienne | Villes | Voitures | Voyages | Vêtements

> NOS AUTRES SITES : Cours mathématiques | Cours d'espagnol | Cours d'allemand | Cours de français | Cours de maths | Outils utiles | Bac d'anglais | Learn French | Learn English | Créez des exercices

> INFORMATIONS : Copyright - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée | Cookies.
| Cours et exercices d'allemand 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.