Cours d'allemand gratuits Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Imprimer
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien


Recommandés :
- Jeux gratuits
- Nos autres sites



Polynômes (1)

<< Forum maths || En bas

POSTER UNE NOUVELLE REPONSE


Polynômes
Message de iris6 posté le 13-11-2008 à 21:48:20 (S | E | F)

Bonjour, j'aurais besoin d'aide svp pour un exercice sur les polynômes.

On a Pn (x) un polynôme:
Pn (x)=(xn-1)(xn+1-1)
et n un entier naturel

Démontrer qu'il y a un polynôme Qn (x) de telle sorte que :
Pn (x)=(x-1)².(x+1).Qn (x)




Réponse: Polynômes de lagouv, postée le 14-11-2008 à 08:32:50 (S | E)
Bonjour,

En fait, c'est tout simple.

On te demande juste de montrer que ton polynome P est factorisable par (x-1)^2 et par x+1.

Essaie de factoriser x^n - 1 et x^(n+1)-1 (juste assez pour faire apparaitre du (x-1)^2 et du x+1 ) et tu obtiendras tout naturellement ton polynome Q.

Voilà ,

Bonne journée

Letitia






Réponse: Polynômes de iris6, postée le 14-11-2008 à 13:38:19 (S | E)

Salut,


Je ne sais pas comment factoriser (xn-1) et (xn+1-1) par (x-1)2 et (x+1)


Est ce que je dois faire la division euclidienne ?


et merci




Réponse: Polynômes de taconnet, postée le 14-11-2008 à 14:52:32 (S | E)
Bonjour.

Commencez en posant n = 3 par exemple.

P3 (x) = (x3 - 1)(x4 -1)

On connaît l'identité remarquable :

x3 - 1 = (x - 1)(x² + x + 1)

On sait aussi

1 + x + x2 + x3 + x4 + .... + .. xn est une progression géométrique de raison x et de premier terme 1 dont on sait déterminer la somme.

On a donc :

xn - 1 = (x - 1)(xn-1 + xn-2 + ...... + x² + x + 1

D'autre part
x4 - 1 = ((x²)² - 1) = (x² - 1)(x² + 1) = (x -1 )(x + 1)(x² + 1)

conséquence :

(x3 - 1)(x4 -1) = (x - 1)(x² + x +1)(x - 1)x + 1)(x² + 1)
(x3 - 1)(x4 -1) = (x - 1)²(x + 1)(x²+ x +1)(x² + 1)
(x3 - 1)(x4 -1) = (x - 1)²(x + 1)(x4 + x3 + 2x2 + x +1)

Ainsi on a bien :
P3 (x) = (x3 - 1)(x4 -1) = (x - 1)²(x + 1)(x4 + x3 + 2x2 + x +1)

Avec Q(x) = x4 + x3 + 2x2 + x + 1

Attention ! le dégré de Q(x) n'est pas celui de P(x)

A vous de généraliser........


Réponse: Polynômes de iris6, postée le 14-11-2008 à 15:02:22 (S | E)
merci beaucoup pour votre aide




POSTER UNE NOUVELLE REPONSE

Partager : Facebook / Twitter / ... 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | GUIDE DE TRAVAIL | NOS MEILLEURES FICHES | Les fiches les plus populaires | Aide/Contact

> COURS ET TESTS : Abréviations | Accords | Adjectifs | Adverbes | Alphabet | Animaux | Argent | Argot | Articles | Audio | Auxiliaires | Chanson | Communication | Comparatifs/Superlatifs | Composés | Conditionnel | Confusions | Conjonctions | Connecteurs | Contes | Contraires | Corps | Couleurs | Courrier | Cours | Dates | Dialogues | Dictées | Décrire | Démonstratifs | Ecole | Etre | Exclamations | Famille | Faux amis | Films | Formation | Futur | Fêtes | Genre | Goûts | Grammaire | Grands débutants | Guide | Géographie | Heure | Homonymes | Impersonnel | Infinitif | Internet | Inversion | Jeux | Journaux | Lettre manquante | Littérature | Magasin | Maison | Majuscules | Maladies | Mots | Mouvement | Musique | Mélanges | Méthodologie | Métiers | Météo | Nature | Nombres | Noms | Nourriture | Négations | Opinion | Ordres | Participes | Particules | Passif | Passé | Pays | Pluriel | Politesse | Ponctuation | Possession | Poèmes | Pronominaux | Pronoms | Prononciation | Proverbes | Prépositions | Présent | Présenter | Quantité | Question | Relatives | Sports | Style direct | Subjonctif | Subordonnées | Synonymes | Temps | Tests de niveau | Tous les tests | Traductions | Travail | Téléphone | Vidéo | Vie quotidienne | Villes | Voitures | Voyages | Vêtements

> NOS AUTRES SITES : Cours mathématiques | Cours d'espagnol | Cours d'allemand | Cours de français | Cours de maths | Outils utiles | Bac d'anglais | Learn French | Learn English | Créez des exercices

> INFORMATIONS : Copyright - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée | Cookies.
| Cours et exercices d'allemand 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.