Cours d'allemand gratuits Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés

100% gratuit !
[Avantages]


- Accueil
- Accès rapides
- Imprimer
- Livre d'or
- Plan du site
- Recommander
- Signaler un bug
- Faire un lien


Recommandés :
- Jeux gratuits
- Nos autres sites



Période d'une fonction

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Période d'une fonction
Message de maskhonit posté le 04-11-2021 à 16:21:45 (S | E | F)
Bonjour,
J’aurais besoin d'aide pour résoudre une question car je ne sais pas comment m'y prendre:
-Déterminer la (plus petite) période de la fonction f (x)=cos (3x + 1) + 2 et réduire au maximum son intervalle d’étude, en utilisant les symétries du graphe de f.

Pour la période:
cos (3x + 1) + 2
= cos (3x + 1 + 2kπ) + 2
= cos (3(x + (2kπ/3))+ 1 ) + 2
Donc T=2π/3

Mais comment démontrer que 2π/3 est la plus petite période de f?

Merci d'avance pour votre aide


Réponse : Période d'une fonction de wab51, postée le 04-11-2021 à 19:23:31 (S | E)

Bonsoir 

cos (3x + 1) + 2
= cos (3x + 1 + 2kπ) + 2
= cos (3(x + (2kπ/3))+ 1 ) + 2
Donc  T=2π/3 (la plus petite période s'obtient avec k=1 (voir definition générale ci-dessous).

Sinon un autre petit raisonnement (en sachant que cos(x)=cos(x+2) :

 

Voici la definition générale : f : D R une fonction d'une variable réelle et P un réel strictement positif , PR*+.L fonction f est périodique de période P (ou P=périodique) si pour tout xD on a x+PD et f(x+P)=f(x) . P est la plus petite période qui vérifie la definition générale .





Réponse : Période d'une fonction de wab51, postée le 05-11-2021 à 19:29:52 (S | E)

En fait ce qui a été dit précédemment est déjà une réponse simple à ta question posée .J'ai attendu au moins une réponse de ta part !!! 

On peut encore faire le travail autrement et en appelant T une période (s'i elle existe) de f et non pas  comme tu l'avais pris ou supposé à l'avance . Voici donc la nouvelle méthode encore plus générale ,en plus du résultat prouve ou justifie pourquoi  est la plus petite période positive de f .

 






[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths

Partager : Facebook / Twitter / ... 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | GUIDE DE TRAVAIL | NOS MEILLEURES FICHES | Les fiches les plus populaires | Aide/Contact

> COURS ET TESTS : Abréviations | Accords | Adjectifs | Adverbes | Alphabet | Animaux | Argent | Argot | Articles | Audio | Auxiliaires | Chanson | Communication | Comparatifs/Superlatifs | Composés | Conditionnel | Confusions | Conjonctions | Connecteurs | Contes | Contraires | Corps | Couleurs | Courrier | Cours | Dates | Dialogues | Dictées | Décrire | Démonstratifs | Ecole | Etre | Exclamations | Famille | Faux amis | Films | Formation | Futur | Fêtes | Genre | Goûts | Grammaire | Grands débutants | Guide | Géographie | Heure | Homonymes | Impersonnel | Infinitif | Internet | Inversion | Jeux | Journaux | Lettre manquante | Littérature | Magasin | Maison | Majuscules | Maladies | Mots | Mouvement | Musique | Mélanges | Méthodologie | Métiers | Météo | Nature | Nombres | Noms | Nourriture | Négations | Opinion | Ordres | Participes | Particules | Passif | Passé | Pays | Pluriel | Politesse | Ponctuation | Possession | Poèmes | Pronominaux | Pronoms | Prononciation | Proverbes | Prépositions | Présent | Présenter | Quantité | Question | Relatives | Sports | Style direct | Subjonctif | Subordonnées | Synonymes | Temps | Tests de niveau | Tous les tests | Traductions | Travail | Téléphone | Vidéo | Vie quotidienne | Villes | Voitures | Voyages | Vêtements

> NOS AUTRES SITES : Cours mathématiques | Cours d'espagnol | Cours d'allemand | Cours de français | Cours de maths | Outils utiles | Bac d'anglais | Learn French | Learn English | Créez des exercices

> INFORMATIONS : Copyright - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée | Cookies. [Modifier vos choix]
| Cours et exercices d'allemand 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.