Montrer que x^3 - x^2 est dérivable
Cours gratuits > Forum > Forum maths || En basMessage de ln924 posté le 14-02-2021 à 11:12:47 (S | E | F)
Bonjour, je bloque sur une toute petite question de mon DM :
Soit f une fonction définie pour tout x réel par : f(x) = x^3 - x^2
Déterminer la fonction dérivée de la fonction f après avoir justifié qu’elle est dérivable.
Comme d’habitude j’arrive à trouver la dérivée de la fonction mais je ne sais jamais comment montrer qu’elle est dérivable sur R ou [0 ; + infini[ ...
Ici la dérivée de f est : 3x^2 - 2x
Merci d’avance !!
Réponse : Montrer que x^3 - x^2 est dérivable de tiruxa, postée le 14-02-2021 à 11:39:08 (S | E)
Ceci est un doublon merci de supprimer ce message.
Réponse : Montrer que x^3 - x^2 est dérivable de ln924, postée le 14-02-2021 à 11:45:23 (S | E)
Merci de votre réponse mais qu’est ce qu’un doublon ?
Je pense que ça signifie que j’ai posté 2 fois la même question, mais dans ce post je cherche à savoir comment montrer que f est dérivable et dans l’autre post je cherche à trouver le sens de variation de f. Merci !
-------------------
Modifié par ln924 le 14-02-2021 11:51
Réponse : Montrer que x^3 - x^2 est dérivable de tiruxa, postée le 14-02-2021 à 14:48:02 (S | E)
Ok maisen effet c'est poser deux fois la même question ou bien des questions différentes sur un même exercice. C'est à éviter donc je répondrai sur l'autre sujet.
Réponse : Montrer que x^3 - x^2 est dérivable de chezmoi, postée le 14-02-2021 à 23:10:27 (S | E)
Bonsoir.
A mon avis:
f(x) = x^3 - x^2
∀x ∈ℝ f’(x) = lim ∆x → 0 [f(x+∆x) –f(x)] /∆x
⇒ lim ∆x → 0 [(x+∆x -1)( x+∆x)^2 – (x -1)( x^2)]/ ∆x =
lim ∆x → 0 [(x+∆x -1)( x^2+∆x^2 +2x∆x) – (x^3 +x^2)]/ ∆x =
lim ∆x → 0 [(x^3+3x^2∆x –x^2 + -2x∆x + O(∆x^2) – x^3 +x^2)]/ ∆x =
lim ∆x → 0 [(3x^2- 2x) + O(∆x^2)] = 3x^2-2x ∈ℝ ⇔ x ∈ℝ
donc la fonction est dérivable sur R
Réponse : Montrer que x^3 - x^2 est dérivable de ln924, postée le 14-02-2021 à 23:22:00 (S | E)
Merci beaucoup pour vos réponses ! Cela m’a aidé, bonne soirée !
Cours gratuits > Forum > Forum maths